DOI: 10.3969/j.issn.1000-1026.2012.03.009

电动汽车充电站的最优选址和定容

刘志鹏¹,文福拴²,薛禹胜³,辛建波⁴

(1. 华南理工大学电力学院,广东省广州市 510640; 2. 浙江大学电气工程学院,浙江省杭州市 310027;
3. 国网电力科学研究院/南京南瑞集团公司,江苏省南京市 210003; 4. 江西省电力科学研究院,江西省南昌市 330006)

摘要:提出了能够计及地理因素和服务半径的 2 步筛选法,以此来确定充电站的候选站址。以规 划期内充电站的总成本(包括投资、运行和维护成本)和网损费用之和最小为目标,考虑了相关的 约束条件,构造了电动汽车充电站最优规划的数学模型,并采用改进的原对偶内点法来求解。修 改的 IEEE 123 节点配电系统算例说明了所发展模型和算法的基本特征。

关键词:电动汽车;充电站;选址和定容;原对偶内点法

0 引言

近 10 多年来,随着动力电池技术的发展,电动 汽车(electric vehicle,EV)已在欧美、日本等发达国 家初步形成规模市场^[1]。中国也提出了到 2020 年 电动汽车(包括混合动力汽车、纯电动汽车、燃料电 池汽车等)保有量达到 500 万辆的发展规划。

在此背景下,电动汽车充电站最优规划成为 个值得研究的重要问题。电动汽车不但可以提高能 源利用效率,减少污染和温室气体排放量,借助削峰 填谷平滑负荷曲线,还可以通过与间歇性可再生能 源发电(如风电)的协同作用来提高电力系统运行的 安全性和经济性。但是,如果电动汽车充电站的选 址和定容不当,有可能影响城市交通网络的规划布 局、电动汽车用户的出行便利与否,进而影响电动汽 车的广泛应用,也可能导致电能损耗显著增加,使某 些节点电压明显下降。充电站最优规划问题已经引 起一些国内外学者的关注^[2-8]。文献[5]分析了整车 充电系统和地面充电系统的优缺点,并从充电站的 安装容量、外部接入方式及其影响因素等角度,对充 电站的规划建设问题作了初步研究。文献[6]分析 了影响电动汽车充电站规划的诸多因素,包括充电 负荷的总体需求、电动汽车运营模式等;并就充电站 的布局规划问题,提出了应满足充电站服务半径要 求,与电动汽车交通密度、充电需求分布、城市总体 规划、道路规划相配合等的原则性建议。文献[7]针

— 54 —

对电动汽车充电设施规划问题所具有的特征,提出 将其划分为示范、公益和商业运营3个阶段,分析了 每个阶段的特点,并发展了优化电动汽车充电方式 的数学模型。文献[8]构造了一种适用于区域电动 汽车充电站规划的优化模型,该模型以候选站址与 变电站之间的距离、充电站安装费用和电动汽车数 量为约束条件,以投运至目标年充电站运营收益最 大化为目标。

到目前为止,国内外在充电站规划方面的研究 还处于初级阶段,尚未形成完整、系统的充电站规划 模型和方法。现有的充电站规划模型一方面比较粗 糙,另一方面在确定候选站址时考虑的因素也不够 全面,例如在选择安装容量时没有系统地考虑充电 需求的分布特征、动力电池的性能及其可能对电力 系统带来的影响等因素。

针对电动汽车充电站规划问题,本文提出用 2 步筛选法来确定充电站的候选站址,构造了电动 汽车充电站最优规划的数学模型,并采用改进的原 对偶内点法来求解。以 IEEE 123 节点配电系统为 例,对所发展的模型和方法进行了验证。

1 充电站候选站址的确定

1.1 确定候选站址时需要考虑的地理因素

从城市规划的角度来看,充电站选址时需要充 分考虑城市交通网络布局约束。从电力网络规划的 角度来看,作为中低压配电系统的重要组成部分,充 电站的选址应与配电系统的现状、近远期规划、建设 与改造等相融合,应尽可能接近负荷中心并满足负 荷平衡、电能质量和供电可靠性等方面的要求^[9]。 从电动汽车用户的角度来看,充电站站址应选择在 充电需求比较集中和方便的场所。此外,在选择充

收稿日期:2011-08-31;修回日期:2011-09-22。 国家自然科学基金资助项目(51107114,51177145);江西省 电力公司科研项目"电动汽车接入对江西电网安全经济运行 及社会影响"。

电站候选站址时,还必须考虑地段的适应性和地价 成本等因素。

1.2 充电站服务半径

动力电池的放电深度对其循环寿命影响很大。 一般而言,当动力电池的放电深度达到 50%~70% 时,动力电池的再次充电对延长其使用寿命效果最 好。因此,为了使动力电池的循环寿命最大化,定义 电动汽车的合理续驶里程为电动汽车从动力电池组 处于最佳放电深度开始放电直到最大放电深度时所 能行驶的里程。匀速行驶情况下电动汽车的合理续 驶里程 $d_{\rm Ev}^{\rm Ev}$ 为^[10-11]:

$$d_{\rm EV}^{\rm E} = \frac{\eta_{\rm EV} v_{\rm EV} (S_{\rm EV}^{\rm opt} - S_{\rm EV}^{\rm max}) \eta_{\rm I} W_{\rm EV}^{\rm rat} V_{\rm EV}}{P_{\rm EV}} \qquad (1)$$

式中: $P_{\rm EV}$ 为电动汽车发动机的额定功率; $\eta_{\rm EV}$ 为电动 汽车机械系统和电气系统的总效率,即电能转换成 机械能的总效率; $v_{\rm EV}$ 为与电动汽车续驶里程有关的 国家标准中所规定的匀速行驶速度^[10]; $S_{\rm EV}^{\rm opt}$ 为动力 电池组达到最佳放电深度时的荷电状态; $S_{\rm EV}^{\rm max}$ 为动 力电池组达到最大放电深度时的荷电状态; $\eta_{\rm I}$ 为动 力电池组的额定电流与实际放电电流的比值(下文 简称电流比); $W_{\rm EV}^{\rm rat}$ 为动力电池组的额定容量; $V_{\rm EV}$ 为 动力电池组的端电压。

为保障电动汽车的行驶能力并满足用户的日常 出行需要,2个相邻充电站间的距离不能太远。另 外,为了避免资源浪费,在满足用户充电需求的前提 下,应尽可能避免充电站分布过于集中,使相邻2个 充电站的距离不能太近。因此,充电站服务半径 $d_{\text{EVCS}}^{\text{S}}$ 和相邻2个充电站间的实际距离 D_{EVCS} 应 满足:

$$\begin{cases} d_{\rm EVCS}^{\rm s} \leqslant d_{\rm EV}^{\rm E} \\ d_{\rm EVCS}^{\rm s} < D_{\rm EVCS} < 2d_{\rm EVCS}^{\rm s} \end{cases}$$
(2)

式中: $D_{\text{EVCS}} = k^* l_{\text{EVCS}}$,其中 l_{EVCS} 为相邻 2 个充电站 之间的供电线路长度, k^* 为曲折系数(将供电线路 的长度转化为实际距离的折算系数)。

根据相邻2个充电站之间的实际距离和每个充 电站的服务半径,对给定的初选站址进行筛选,从而 确定合理的充电站站址规划方案。同时,根据地理 信息系统中广泛应用的伏罗诺伊(Voronoi)图^[12] (也称为泰森(Thiessen)多边形),对充电站的充电 服务区域进行划分,从而指导车主根据电池状态选 择适当的充电站进行充电。

2 充电站最优规划模型

2.1 目标函数

以规划期内充电站的总成本和网损费用之和最 小作为充电站最优规划问题的目标^[13]: $\min f = \sum_{i=1}^{N_{\text{EVCS}}} \sum_{t=1}^{T} \frac{C_{\text{EVCS}i}^{\text{I}} + C_{\text{EVCS}i}^{\text{O}} + C_{\text{EVCS}i}^{\text{M}} + C_{\text{PS}}^{\text{L}}}{(1+\eta)^{t}} \quad (3)$

式中: $C_{\text{EVCS}i}^{\text{O}}$, $C_{\text{EVCS}i}^{\text{O}}$, $C_{\text{EVCS}i}^{\text{M}}$ 和 C_{FS}^{K} 分别为规划期内充 电站 i的投资成本、运行成本、维护成本和接入充电 站后的系统网损费用; η 为折现率;T为规划期; N_{EVCS} 为所研究的配电系统中包含的充电站数目。

需要指出,此后提到的各项成本均指折算到每年的成本。

2.1.1 投资成本

充电站 i 的充电设备(包括充电机和充电桩)总容量 S_{CHi} 为^[9]:

$$S_{\text{CH}i} = K_i \sum_{j=1}^{r_i} S_{\text{CH}ij} = K_i \sum_{j=1}^{r_i} \frac{P_{\text{CH}ij}}{\eta_{\text{CH}ij} \cos \phi_{\text{CH}ij}}$$
(4)

式中: n_i 为充电站i的充电设备数量; S_{CHij} , P_{CHij} , cos ϕ_{CHij} , η_{CHij} 分别为充电站i中第j台充电设备的 输入额定容量、输出功率、功率因数和充电效率; K_i 为充电设备的同时工作系数。

充电站 i 的变压器总容量 S_{ETi} 为^[9]:

$$S_{\text{ET}i} = \frac{S_{\text{CH}i} + S_{\text{DE}i}}{L_{\text{EVCS}i}^{\text{max}}}$$
(5)

式中 S_{DEi} 为充电站i中除变压器和充电设备外的其他设备的总用电容量,包括照明、办公用电容量等; $L_{\text{EVCSi}}^{\text{max}}$ 为充电站i的日最大负荷率。

充电站 *i* 的投资成本 $C_{\text{EVCS}i}^{1}$ 为: $C_{\text{EVCS}i}^{1} = C_{\text{ET}i}^{1}S_{\text{ET}i} + C_{\text{CH}i}^{1}S_{\text{CH}i} + C_{\text{DE}i}^{1}S_{\text{DE}i} + C_{\text{EA}i}^{1}F_{\text{EA}i}$ (6)

式中: C_{ETi}^{l} 和 C_{CHi}^{l} 分别为充电站 *i* 中变压器和充电设备的单位容量投资成本; C_{DEi}^{l} 为除变压器和充电设备外的其他设备的单位容量投资成本; C_{EAi}^{l} 和 F_{EAi} 分别为充电站 *i* 的单位平方米土地使用成本和占地面积。

2.1.2 运行成本

充电站 i 的运行成本 $C_{\text{EVCS}i}^{0}$ 包括充电成本 $C_{\text{CH}i}$ 、 电气设备电能消耗成本 C_{EEi} 、充电站的滤波补偿成 本 $C_{\text{VC}i}$ 和人力成本 $C_{\text{HR}i}$,具体计算方法如下:

$$C_{\text{EVCS}i}^{0} = C_{\text{CH}i} + C_{\text{EE}i} + C_{\text{VC}i} + C_{\text{HR}i} = C_{\text{P}i}^{*} P_{\text{CH}i}^{\text{N}} T_{\text{CH}i} + C_{\text{P}i}^{*} P_{\text{EE}i}^{\text{max}} T_{\text{EE}i} + C_{\text{VC}i} + C_{\text{HR}i}$$
(7)

式中: P_{CHi}^{N} 和 T_{CHi} 分别为充电站 i 中充电设备的额 定功率和年利用小时数; P_{EEi}^{max} 和 T_{EEi} 分别为充电站 i中电气设备的最大消耗功率和年利用小时数; C_{Pi}^{*} 为 充电站 i 的购电电价。

为了鼓励充电站提高其所连接的网络节点处的 日平均负荷率,发挥削峰填谷作用^[14]和提高系统供 电可靠性,供电公司在政策允许的范围内可对充电 站采用特殊的购电电价。例如,可在售电电价的基

- 55 —

础上,通过采用电价调节系数来确定购电电价:

$$C_{\rm P_i}^* = \frac{C_{\rm P}^{\rm o}}{L_{\rm EVCS_i}^{\rm av}} \tag{8}$$

式中: C_{P}° 为供电公司的售电电价; L_{EVCSi}^{av} 为充电站i的日平均负荷率。

式(8)表示的是一种特例。事实上,可以采用很 多种方法为充电站提供激励性的购电电价,以刺激 充电站参与改善系统的安全、经济运行状况。

为了保证电能质量,在充电站中一般采取有源 滤波和无功补偿措施,相关成本^[15]为:

$$C_{\text{VC}i} = C_{\text{VC}i}^{\scriptscriptstyle 0} K_{\text{VC}i} \sum_{j=1}^{n_i} K_{\text{RA}ij} \eta_{\text{HC}ij} S_{\text{CH}ij}$$
(9)

式中: C_{VCi}^{0} 为对于充电站*i*中有源滤波和无功补偿的 单位容量成本; K_{VCi} 为整体修正系数; K_{RAij} 为充电站 *i*中第*j*台充电设备的可靠性系数; η_{HCij} 为充电站*i* 中第*j*台充电设备在交流电源输入端所产生的谐波 电流的含有率。

2.1.3 维护成本

充电站 i 的维护成本 $C_{\text{EVCS}i}^{\text{M}}$ 为:

 $C_{\text{EVCSi}}^{\text{M}} = C_{\text{CH}i}^{\text{M}} S_{\text{ET}i} + C_{\text{CH}i}^{\text{M}} S_{\text{CH}i} + C_{\text{DE}i}^{\text{M}} S_{\text{DE}i}$ (10) 式中: $C_{\text{ET}i}^{\text{M}} \cap C_{\text{CH}i}^{\text{M}}$ 分别为充电站 i 中变压器和充电设备的单位容量维护成本; $C_{\text{DE}i}^{\text{M}}$ 为除去变压器和充电设备外的其他设备的单位容量维护成本。

2.2 约束条件

约束条件包括等式约束和不等式约束。这里需 要满足的等式约束就是潮流方程。

充电设备是强非线性负荷,充电时会产生大量 谐波。当电动汽车采用快速充电模式时,充电站的 负荷功率和电压幅值明显变化^[16]。为避免充电站 对系统运行安全和电能质量造成的负面影响,在构 建充电站规划模型时需考虑下述不等式约束^[17-18]。

1) 变压器容量约束

 $S_{\text{ET}i} \leqslant S_{\text{ET}i}^{\max}$ $i = 1, 2, \cdots, N_{\text{EVCS}}$ (11) 式中: $S_{\text{ET}i}^{\max}$ 为充电站 i 的变压器总容量上限值。

2)无功补偿上下限约束

 $Q_{\mathrm{EVCS}i}^{\min} \leqslant Q_{\mathrm{EVCS}i} \leqslant Q_{\mathrm{EVCS}i}^{\max}$ $i = 1, 2, \cdots, N_{\mathrm{EVCS}}$ (12)

式中: Q_{EVCSi} 为充电站i的无功补偿功率; Q_{EVCSi}^{max} 和 Q_{EVCSi}^{min} 分别为充电站i的无功补偿功率上、下限。

3)节点电压幅值的上下限约束

$$V_i^{\min} \leqslant V_i \leqslant V_i^{\max} \qquad i = 1, 2, \cdots, N \quad (13)$$

式中: V_i 为节点 i 的电压幅值; V_i^{max} 和 V_i^{min} 分别为 节点 i 的电压幅值上、下限;N 为所研究的配电系统 中的节点数目。

4)馈线最大电流约束

$$I_{ij} \mid \leq I_{ij\max}$$
 $i,j=1,2,\cdots,N$ (14)

式中: I_{ij} 和 I_{ijmax} 分别为配电系统中馈线ij的电流和 允许流过的最大电流。

5) 允许接入的电动汽车最大充电功率约束

$$\sum_{i=1}^{N_{\rm EVCS}} P_{\rm EVCSi} \leqslant P_{\rm EVCS}^{\rm max} \tag{15}$$

式中: $P_{\text{EVCS}i} = \sum_{j=1}^{i} P_{\text{CH}ij}$ 为充电站i的充电有功功

率;P^{max}_{EVCs}为允许接入的电动汽车最大充电功率。

6)充电站 i 的日平均负荷率约束

$$L_{\text{EVCS}i}^{\text{av}} \leqslant L_{\text{EVCS}i}^{\text{max}}$$
 $i = 1, 2, \cdots, N_{\text{EVCS}}$ (16)
7)功率因数约束

电动汽车负荷接入后,充电站 *i* 的负荷功率因数应大于给定运行的功率因数最小值 *F*_{min}:

$$F_{\min} \leqslant \frac{P_{\mathrm{L}i} + P_{\mathrm{EVCS}i}}{\sqrt{(P_{\mathrm{L}i} + P_{\mathrm{EVCS}i})^2 + (Q_{\mathrm{L}i} + Q_{\mathrm{EVCS}i})^2}}$$
(17)

式中: $i=1,2,\cdots,N_{\text{EVCS}}$; $P_{\text{LI}}和Q_{\text{LI}}分别为节点<math>i$ 处负 荷的有功功率和无功功率。

2.3 数学模型

基于上述目标函数和约束条件,电动汽车充电 站的最优规划数学模型可概括为:

$$\begin{array}{l} \min f(\mathbf{x}) \\ \text{s. t. } \mathbf{g}(\mathbf{x}) = \mathbf{0} \\ \mathbf{h}_{\min} \leqslant \mathbf{h}(\mathbf{x}) \leqslant \mathbf{h}_{\max} \\ \mathbf{x}_{\min} \leqslant \mathbf{x} \leqslant \mathbf{x}_{\max} \end{array}$$
(18)

式中:f(x)为目标函数;g(x)为等式约束;h(x)为不 等式约束; h_{max} 和 h_{min} 分别为h(x)的上、下限值;x为 状态变量; x_{max} 和 x_{min} 分别为x的上、下限值。

式(18)所描述的是一个典型的有约束非线性规 划问题,在运筹学中已提出了不少求解这类问题的 方法。本文采用近年来广泛应用的原对偶内点法来 求解这一问题。原对偶内点法以其收敛速度快、鲁 棒性强、对初值选择不敏感等优点,成为目前求解 二次规划和非线性规划问题最常用的算法之一。考 虑到原对偶内点法的计算量主要集中在修正方程的 求解上,本文通过充分利用该问题的稀疏结构来简 化修正方程,从而明显提高了计算速度。

3 原对偶内点法及其改进

3.1 拉格朗日函数

基于式(18)并引入非负松弛变量,可建立拉格 朗日函数:

$$L_{\mu}(\mathbf{y}) = f(\mathbf{x}) - \mu^{(k)} \sum_{i=1}^{p} (\ln s_i + \ln z_i) - \mathbf{\lambda}^{\mathrm{T}} \mathbf{g}(\mathbf{x}) - \mathbf{\pi}^{\mathrm{T}} (\mathbf{h}_{\max} - \mathbf{s} - \mathbf{z} - \mathbf{h}_{\min}) - \mathbf{v}^{\mathrm{T}} (\mathbf{h}_{\max} - \mathbf{h}(\mathbf{x}) - \mathbf{z})$$
(19)

-56 -

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

式中: $y = (s, \pi, z, v, x, \lambda); z$ 和 s 为松弛变量构成的 向量; s_i 和 z_i 分别为向量 s 和 z 的第 i 个元素; λ, π 和 v 均为拉格朗日乘子构成的向量; k 和 p 分别为 迭代次数和不等式约束数目; $\mu^{(k)}$ 为障碍参数。

障碍参数与互补间隙之间的关系为:

$$\mu^{(k)} = \frac{\sigma^{(k)} \rho^{(k)}}{2p}$$
(20)

式中: $\rho^{(k)}$ 为互补间隙; $\sigma^{(k)}$ 为中心参数。 3.2 简化的修正方程

式(19)在取得极值时满足 KKT 一阶最优化条件^[19],采用牛顿法可得到最优搜索方向:

Π	0	S	0	0	0	(Δs)	1	(Ys)	
0	Y	Ζ	\boldsymbol{Z}	0	0	Δz		Ŷz	
Ι	Ι	0	0	0	0	$\Delta \pi$	_	γ _π	
0	Ι	0	0	${old J}_h$	0	Δv	_	γ_v	
0	0	0	$\boldsymbol{J}_{\boldsymbol{h}}^{\mathrm{T}}$	$\nabla L_{\mu}^{2} L_{\mu}$	$-J_{g}^{\mathrm{T}}$	Δx		γ_x	
0	0	0	0	$-J_{g}$	0	$\Delta \boldsymbol{\lambda}$		γ_{λ}	
					,			(21)

式中: Π 和 Y 分别为关于 π 和 π + v的对角矩阵; I 为单位矩阵; S 和 Z 分别为关于 s 和 z 的对角矩阵; J_s 为等式约束对应的雅可比矩阵; J_h 为不等式约束 对应的雅可比矩阵。

原对偶内点法的计算量主要体现在式(21)的求 解上。该式具有稀疏结构,充分利用其稀疏性可以 节省大量的计算时间。为此,本文提出了一种改进 方法,具体实现过程如下。

首先,将式(21)的矩阵展开成下面的等式形式:

$$\begin{cases} \Pi \Delta s + S \Delta \pi = -S\pi + \mu^{(k)} e = \gamma_s \\ Y \Delta z + Z \Delta \pi + Z \Delta v = -Zv + \mu^{(k)} e = \gamma_z \\ \Delta s + \Delta z = -s - z + h_{max} - h_{min} = \gamma_\pi \\ \Delta z + J_h \Delta x = -h(x) - z + h_{max} = \gamma_v \\ J_h^T \Delta v + \nabla_x^2 L_\mu \Delta x - J_g^T \Delta \lambda = -\nabla_x f(x) + \\ J_g^T(x) \lambda - J_h^T(x) v = \gamma_x \\ - J_g \Delta x = g(x) = \gamma_\lambda \end{cases}$$

$$(22)$$

式中:e 为单位向量; $v = \pi + v_{o}$ 之后 修式(22)中的第3式和第4式化符为

$$\Delta z = -J_h \Delta x + \gamma_r$$

$$\left\{ \Delta s = \boldsymbol{\gamma}_{\pi} - \Delta \boldsymbol{z} = \boldsymbol{\gamma}_{\pi} + \boldsymbol{J}_{h} \Delta \boldsymbol{x} - \boldsymbol{\gamma}_{v} \right\}$$

将式(23)代入式(22)中的第1式和第2式 可得:

$$\begin{cases} \Delta \pi = S^{-1} [\gamma_s - \Pi \Delta s] \\ \Delta \nu = Z^{-1} [\gamma_z + \nu (J_h \Delta x - \gamma_\nu)] - (24) \\ S^{-1} [\gamma_s - \Pi (\gamma_\pi + J_h \Delta x - \gamma_\nu)] \end{cases}$$
将式(24)中的第2式代入式(22)中的第5式
可得:

$$\begin{cases} J\Delta x - J_{g}^{T}\Delta \lambda = \gamma_{x}^{*} \\ J = J_{h}^{T} (Z^{-1}\upsilon + S^{-1}\Pi)J_{h} + \nabla_{x}^{2}L_{\mu} \\ \gamma_{x}^{*} = \gamma_{x} - J_{h}^{T}[Z^{-1}(\gamma_{z} - \upsilon\gamma_{\mu}) - S^{-1}(\gamma_{s} - \Pi\gamma_{\pi} + \Pi\gamma_{\nu})] \end{cases}$$
(25)

将式(25)中的第1式和式(22)中的第6式联 立,即可得到修正方程的简化矩阵形式:

$$\begin{bmatrix} \boldsymbol{J} & -\boldsymbol{J}_{g}^{\mathrm{T}} \\ -\boldsymbol{J}_{g} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\gamma}_{x}^{\star} \\ \boldsymbol{\gamma}_{\lambda} \end{bmatrix}$$
(26)

通过式(26)求出 Δx 和 $\Delta \lambda$,然后根据式(23)和 式(24)求出 Δs , Δz , $\Delta \pi$ 和 Δv ,这样可以大大减小计 算规模。

3.3 计算流程

步骤 1:设置迭代次数 k=0,选择合适的计算初 始点 (包括充电站的充电功率)。

步骤 2:根据式(20)确定障碍参数 $\mu^{(k)}$ 、对偶间 隙 $\rho^{(k)}$ 和中心参数 $\sigma^{(k)}$ 。

步骤 3.根据式(26)、式(23)和式(24),求解得 到各个变量的搜索方向。

步骤4:计算原变量和对偶变量的迭代步长。

步骤 5.修正原变量和对偶变量。

步骤 6:判断计算终止条件是否满足,如果满 足,则结束计算并输出结果;否则置迭代次数 *k* = *k*+1后返回步骤 2。算法的具体步骤见附录 A 图 A1。

4 算例和仿真结果

以附录 A 图 A2 所示的 IEEE 123 节点配电系统^[20]为例来说明所述模型和方法的可行性、有效性。该配电系统的三相开关状态、初始负荷及节点间的线路长度分别见附录 A 表 A1、表 A2 和表 A3。

2009年1月,中国启动了"十城千辆"节能和新 能源汽车示范推广应用工程,重点集中于公交、出租 车、公务、环卫和邮政等公共服务领域。这里以 HFF6112GK50型电动公交车^[11]为例进行分析。

4.1 初始参数设置

1) 电动汽车相关参数如下: $P_{EV} = 124 \text{ kW}$, $\eta_{EV} = 90\%$, $v_{EV} = 40 \text{ km/h}$, $V_{EV} = 384 \text{ V}$; $W_{EV}^{rat} = 255 \text{ A} \cdot \text{h}$, $S_{EV}^{opt} = 50\%$, $S_{EV}^{max} = 30\%$, l_{EVCS} 可由配电系统中所在节点间的所有线路长度相加得到, $\eta_{I} = 1$. 27, $k^* = 1$. 32。

2) T=3, $\eta=12\%$, $C_{\rm P}^{0}=0.06 \notin \pi/(kW \cdot h)$, cos $\phi_{\rm CHij}=0.95$, $\eta_{\rm CHij}=90\%$, $K_{\rm RAij}=1.05$, $\eta_{\rm HCij}=3\%$, $K_{i}=0.8$, $K_{\rm VCi}=0.61$, $C_{\rm ETi}^{\rm I}=40.84 \notin \pi/kVA$, $C_{\rm CHi}^{\rm I}=34.71 \notin \pi/kVA$, $C_{\rm EAi}^{\rm I}=95.63 \notin \pi/m^{2}$, $C_{\rm DEi}^{\rm I}=30.94 \notin \pi/kVA$, $C_{\rm HRi}=16.476$. $41 \notin \pi$, $C_{\rm VCi}^{\rm O}=10.16 \notin \pi/kVA$, $C_{\rm ETi}=11.92 \notin \pi/kVA$,

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

— 57 —

 $C_{CHi}^{M} = 8.92$ 美元/kVA, $C_{DEi}^{M} = 5.21$ 美元/kVA。

3)在修改原对偶内点法中,障碍参数和中心参数的初始值分别给定为 $\mu^{(0)} = 0.2, \sigma^{(0)} = 0.2$ 。

4.2 求解过程

步骤 1:根据 1.1 节中介绍的充电站站址选取 原则,确定该配电系统中部分节点作为充电站初步 候选方案,见附录 A 表 A4。

步骤 2:根据式(1)、式(2)及附录 A 表 A3 中列 出的线路长度,计算充电站服务半径与相邻 2 个充 电站间的距离,要求 $d_{EVCS}^{s} \leq 7.22$ km 且 $D_{EVCS} \in$ (7.22 km,14.44 km);筛选去掉候选方案中相邻 2 个充电站间实际距离不满足约束条件的候选站 址;用伏罗诺伊图在 IEEE 123 节点配电系统中对 充电站划分有效的充电服务区域,见附录 A 图 A3。

由伏罗诺伊图所具有的特性可知^[12],在任意一 个充电站的有效充电区域(附录 A 图 A3 中的凸多 边形)内,电动汽车到该区域内充电站的距离都小 于该电动汽车到其他区域内任何充电站的距离。

经过 2 步筛选确定充电站候选站址后,可以构 造以规划期内充电站总成本和网损费用最小为目标 函数,计及多种约束条件的规划模型;然后采用改进 的原对偶内点法来求解,得到的规划结果见表 1。

	表 1	电动汽车	充电站的	最优选	址和定容	ř 🚺
Tab. 1	Opti	mal siting	and sizing	of EV	charging	stations

最优选址	最优容量/kVA	充电站类型
1	500	1-
31	80	3
39	80	3
87	50	3
107	200	2

电动汽车接入充电站前的日平均负荷率为 52.40%,接入充电站后的日平均负荷率为 68.31%,充电总成本为1313917.16美元。充电 站详细的配置情况如表2所示。

表 2 电动汽车充电站的详细配置情况 Tab. 2 Detailed configurations of EV charging stations

站址	大型充电 机/台	中型充电 机/台	小型充电 机/台	交流充电 桩/根
1	1	2	2	4
31	0	0	2	3
39	0	0	2	2
87	0	0	1	3
107	0	1	2	4

注:大型充电机的型号为 DC500 V/400 A,中型充电机的型号为 DC500 V/200 A,小型充电机的型号为 DC350 V/100 A^[9]。 交流充电桩采用 220 V/380 V 交流电压,额定电流不大于 32 A。

互补间隙趋于 0 是判断原对偶内点法收敛性的 重要依据。附录 A 图 A4 表明,在迭代过程中,互补

— 58 —

间隙是逐渐趋于 0 的,这说明算法的收敛特性是稳 定的。由附录 A 图 A5 可知,在迭代过程中,改进的 原对偶内点法在不断寻找充电站的优化规划方案期 间,并未导致电能损耗的大量增加,反而使得网损率 小幅下降。由附录 A 图 A6 和图 A7 可知,在接入 此规划的充电站后,该配电系统中各节点的电压质 量有所改善,电压波动幅度下降。

综上所述,本文提出的充电站规划模型不但可 以从城市规划、电力网络规划和电动汽车用户3个 方面来计及影响充电站候选站址选择的地理因素, 而且还可以以电动汽车的动力电池性能为基础来考 虑充电站的服务半径。特别地,采用伏罗诺伊图对 充电站的充电服务区域进行划分,可以指导车主根 据电池状态选择合适的充电站。虽然考虑了这些因 素后所构造的充电站最优规划模型比较复杂,但采 用改进的原对偶内点法来求解仍有很好的收敛性。

5 结语

针对电动汽车充电站规划问题,本文提出了一 种将2步筛选法和原对偶内点法相结合的算法。首 先采用了计及地理因素和充电站服务半径的2步筛 选法来确定充电站候选站址;然后针对所研究问题 的特点,对传统的原对偶内点法作了改进,通过充分 利用该问题的稀疏结构来提高求解速度。算例结果 表明,本文提出的方法可以得到合理的充电站规划 方案,电压质量和负荷曲线均得到优化,提高了系统 运行的安全性和可靠性。

附录见本刊网络版(http://aeps.sgepri.sgcc. com.cn/aeps/ch/index.aspx)。

参考文献

- [1] SCHNEIDER K, GERKENSMEYER C, KINTNER-MEYER M, et al. Impact assessment of plug-in hybrid vehicles on Pacific Northwest distribution systems [C]// Proceedings of IEEE Power & Energy Society General Meeting, July 20-24, 2008, Pittsburgh, PA, USA: 6p.
- [2] HAJIMIRAGHA A, CAIZARES C A, FOWLER M W, et al. Optimal transition to plug-in hybrid electric vehicles in Ontario, Canada, considering the electricity-grid limitations [J]. IEEE Trans on Industrial Electronics, 2010, 57(2): 690-701.
- [3] ETEZADI-AMOLI M, CHOMA K, STEFANI J. Rapid-charge electric-vehicle stations [J]. IEEE Trans on Power Delivery, 2010, 25(3): 1883-1887.
- [4] 杨永标,丁孝华,朱金大,等. 物联网应用于电动汽车充电设施的 设想[J]. 电力系统自动化,2010,34(21):95-98.
 YANG Yongbiao, DING Xiaohua, ZHU Jinda, et al. Assumption of internet of things applied in electric vehicle charging facilities[J]. Automation of Electric Power Systems, 2010, 34(21): 95-98.
- [5] 康继光,卫振林,程丹明,等.电动汽车充电模式与充电站建设研 究[J].电力需求侧管理,2009,11(5):64-66.

KANG Jiguang, WEI Zhenlin, CHENG Danming, et al. Research on electric vehicle charging mode and charging stations construction [J]. Power Demand Side Management, 2009, 11(5): 64-66.

- [6] 徐凡,俞国勤,顾临峰,等. 电动汽车充电站布局规划浅析[J]. 华东电力,2009,37(10):1678-1682.
 XU Fan, YU Guoqin, GU Linfeng, et al. Tentative analysis of layout of electrical vehicle charging stations [J]. East China Electric Power, 2009, 37(10): 1678-1682.
- [7] 吴春阳,黎灿兵,杜力,等. 电动汽车充电设施规划方法[J]. 电力 系统自动化,2010,34(24):36-39.
 WU Chunyang, LI Canbing, DU Li, et al. A method for electric vehicle charging infrastructure planning[J]. Automation of Electric Power Systems, 2010, 34(24): 36-39.
- [8] 寇凌峰,刘自发,周欢.区域电动汽车充电站规划的模型与算法
 [J].现代电力,2010,27(4):44-48.
 KOU Lingfeng, LIU Zifa, ZHOU Huan. Modeling algorithm of charging station planning for regional electric vehicle [J].
 Modern Electric Power, 2010, 27(4): 44-48.
- [9] 国家电网公司. 国家电网公司指导性技术文件——电动汽车充 电设施典型设计[EB/OL]. [2011-02-05]. http://wenku. baidu. com/view/0b7f84c72cc58bd63186bd1c. html
- [10] 陈勇,孙逢春.电动汽车续驶里程及其影响因素的研究[J].北 京理工大学学报,2001,21(5):578-582.
 CHEN Yong, SUN Fengchun. Study on range and its related factors of electric vehicles[J]. Journal of Beijing Institute of Technology, 2001, 21(5): 578-582.
- [11] 徐贵宝,王震坡,张承宁. 电动汽车续驶里程能量计算和影响因素分析[J]. 车辆与动力技术,2005(2):53-56.
 XU Guibao, WANG Zhenpo, ZHANG Chengning. Analysis of the energy computation and influence factors of electric vehicle range[J]. Vehicle and Power Technology, 2005(2): 53-56.
- [12] 吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003.
- [13] 刘志鹏,文福拴,薛禹胜,等. 计及可入网电动汽车的分布式电源最优选址和定容[J]. 电力系统自动化,2011,35(18):11-16.
 LIU Zhipeng, WEN Fushuan, XUE Yusheng, et al. Optimal siting and sizing of distributed generators considering plug-in electric vehicles[J]. Automation of Electric Power Systems,

2011, 35(18): 11-16.

- [14] BASS R, HARLEY R, LAMBERT F, et al. Residential harmonic loads and EV charging [C]// Proceedings of IEEE Power & Energy Society Winter Meeting: Vol 2, January 28-February 1, 2001, Columbus, OH, USA: 803-808.
- [15] STAATS P T, GRADY W M, ARAPOSTATHIS A, et al. A statistical analysis of the effect of electric vehicle battery charging on distribution system harmonic voltages[J]. IEEE Trans on Power Delivery, 1998, 13(2): 640-646.
- [16] GOMEZ J C, MORCOS M M. Impact of EV battery chargers on the power quality of distribution systems[J]. IEEE Trans on Power Delivery, 2003, 18(3): 975-981.
- [17] CLEMENT-NYNS K, HAESEN E, DRIESEN J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Trans on Power Systems, 2010, 25(1): 371-380.
- [18] RAHMAN S, SHRESTHA G B. An investigation into the impact of electric vehicle load on the electric utility distribution system[J]. IEEE Trans on Power Delivery, 1993, 8(2): 591-597.
- [19] WU Yuchi, DEBS A S, MARSTEN R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows [J]. IEEE Trans on Power Systems, 1994, 9(2), 876-883.
- [20] IEEE PES Distribution System Analysis Subcommittee. IEEE
 radial test feeders [EB/OL]. [2010-09-17]. http://www.
 ewh.ieee.org/soc/pes/dsacom/testfeeders.html.

刘志鹏(1983—),男,博士研究生,主要研究方向:分布 式电源与电动汽车充电站规划、低频减载和最优潮流。 E-mail: zhipeng. liu09@gmail. com

文福拴(1965—),男,通信作者,特聘教授,博士生导师, 主要研究方向:电力系统故障诊断、系统恢复和电力市场。 E-mail: fushuan.wen@gmail.com

薛禹胜(1941—),男,中国工程院院士,博士生导师,国 网电力科学研究院名誉院长,主要研究方向:电力系统自动 化。E-mail: xueyusheng@sgepri.sgcc.com.cn

Optimal Siting and Sizing of Electric Vehicle Charging Stations

LIU Zhipeng¹, WEN Fushuan², XUE Yusheng³, XIN Jianbo⁴

(1. School of Electric Power, South China University of Technology, Guangzhou 510640, China;

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;

3. State Grid Electric Power Research Institute, Nanjing 210003, China;

4. Jiangxi Electric Power Research Institute, Nanchang 330006, China)

Abstract: A two-step screening method with the environmental factors and service radius of electric vehicle charging stations considered is presented to identify the candidate sites of electric vehicle charging stations. A mathematical model for optimizing electric vehicle charging stations is developed and solved by a modified primal-dual interior point algorithm. This model takes the minimization of electric vehicle charging stations total cost (including investment cost, operation cost and maintenance cost) and the network loss cost as the objective function, and some related constraints are considered. The modified IEEE 123-node distribution system illustrates the essential features of the developed model and algorithm.

This work is supported by National Natural Science Foundation of China (No. 51107114, No. 51177145) and a Project from Jiangxi Power Company.

Key words : electric vehicles; charging stations; siting and sizing; primal-dual interior point algorithm

59 —